A Common Garden Test of Host-Symbiont Specificity Supports a Dominant Role for Soil Type in Determining AMF Assemblage Structure in Collinsia sparsiflora

نویسندگان

  • Shannon P. Schechter
  • Thomas D. Bruns
چکیده

Specialization in plant host-symbiont-soil interactions may help mediate plant adaptation to edaphic stress. Our previous field study showed ecological evidence for host-symbiont specificity between serpentine and non-serpentine adapted ecotypes of Collinsia sparsiflora and arbuscular mycorrrhizal fungi (AMF). To test for adapted plant ecotype-AMF specificity between C. sparsiflora ecotypes and field AMF taxa, we conducted an AMF common garden greenhouse experiment. We grew C. sparsiflora ecotypes individually in a common pool of serpentine and non-serpentine AMF then identified the root AMF by amplifying rDNA, cloning, and sequencing and compared common garden AMF associates to serpentine and non-serpentine AMF controls. Mixing of serpentine and non-serpentine AMF soil inoculum resulted in an intermediate soil classified as non-serpentine soil type. Within this common garden both host ecotypes associated with AMF assemblages that resembled those seen in a non-serpentine soil. ANOSIM analysis and MDS ordination showed that common garden AMF assemblages differed significantly from those in the serpentine-only controls (R = 0.643, P<0.001), but were similar the non-serpentine-only control AMF assemblages (R = 0.081, P<0.31). There was no evidence of adapted host ecotype-AMF specificity. Instead soil type accounted for most of the variation AM fungi association patterns, and some differences between field and greenhouse behavior of individual AM fungi were found.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Serpentine and non-serpentine ecotypes of Collinsia sparsiflora associate with distinct arbuscular mycorrhizal fungal assemblages.

Although plant adaptation to serpentine soils has been studied for several decades, the mechanisms of plant adaptation to edaphic extremes are still poorly understood. Arbuscular mycorrhizal fungi (AMF) are common root symbionts that can increase the plant hosts' establishment and growth in stressful environments. However, little is known about the role plant-AMF interactions play in plant adap...

متن کامل

Edaphic sorting drives arbuscular mycorrhizal fungal community assembly in a serpentine/nonserpentine mosaic landscape

Serpentine soil generates distinct plant assemblages, but it is not known how this edaphically extreme environment affects arbuscular mycorrhizal fungal (AMF) assembly or how this may contribute to plant adaptation to serpentine. Our previous studies showed that serpentine and non-serpentine adapted ecotypes of Collinisa sparsiflora associates with distinct AMF assemblages, but a common garden ...

متن کامل

Specificity between Neotropical tree seedlings and their fungal mutualists leads to plant-soil feedback.

A growing body of evidence obtained largely from temperate grassland studies suggests that feedbacks occurring between plants and their associated soil biota are important to plant community assemblage. However, few studies have examined the importance of soil organisms in driving plant-soil feedbacks in forested systems. In a tropical forest in central Panama, we examined whether interactions ...

متن کامل

More closely related plants have more distinct mycorrhizal communities

Neighbouring plants are known to vary from having similar to dissimilar arbuscular mycorrhizal fungal (AMF) communities. One possibility is that closely related plants have more similar AMF communities than more distantly related plants, an indication of phylogenetic host specificity. Here, we investigated the structure of AMF communities among dominant grassland plants at three sites in the No...

متن کامل

Niche Partitioning Among Arbuscular Mycorrhizal Fungi and Consequences for Host Plant Performance

We understand little about the factors that determine and maintain local species diversity of arbuscular mycorrhizal fungi (AMF), the reasons why a single plant has multiple AMF partners, and how that diversity influences host plant performance. The extent to which co-occurring AMF species occupy different niche space, based on their ability to tolerate different soil conditions or differential...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013